

Timescaledb: An introduction and brief overview

Brent Wood
October 2018

Timescaledb is a postgresql extension providing optimisations and
enhancements for storing and querying timeseries (sensor) data

Background

What is Postgres(ql)?

What is a Postgres extension?

What does timescaledb do/provide?

How do you install it?

What performance & functionality gains are there?

Timescaledb: An introduction and brief overview

Timescaledb is a postgresql extension providing optimisations and enhancements for
storing and querying timeseries (sensor) data

Background

https://medium.com/@aiven_io/timescaledb-101-the-why-what-and-how-9c0eb08a7c0b

Current global trend:

More sensors being deployed – vastly more data to manage/access/retrieve
 (most “big data” & cloud based datasets are timeseries of some sort)

Open ended growing databases – billions of records – includes NIWA

Historic data often kept online

RDBMS vs NoSQL

Postgres development/popularity (including Postgis)

https://medium.com/@aiven_io/timescaledb-101-the-why-what-and-how-9c0eb08a7c0b

Timescaledb: An introduction and brief overview

What is Postgres(ql)?

Open Source enterprise level ORDBMS

Ongoing uptake globally

Rapid development, user driven

Major player in cloud database services

Acronym (& standards) compliant (PITR, ACID, SQL)

Wide language support (UDF)

Preferred NIWA RDBMS platform

- successful & proven

Timescaledb: An introduction and brief overview

What is a Postgres extension?

http://www.asad.pw/awesome-postgres/#extensions

https://pgxn.org/

https://www.postgresql.org/download/products/6-postgresql-extensions/

External, generally third party, tools embedded and tightly integrated with the
core database engine.

Postgis is perhaps the best known Postgres extension within NIWA

http://www.asad.pw/awesome-postgres/#extensions
https://pgxn.org/
https://www.postgresql.org/download/products/6-postgresql-extensions/

Timescaledb: An introduction and brief overview

What does timescaledb do/provide?

Timescaledb is an open source scalable SQL engine for ingesting,
managing and querying large volume timeseries datasets.

Timescaledb: An introduction and brief overview

What does timescaledb do/provide?

Timescaledb is an open source scalable SQL engine for ingesting,
managing and querying large volume timeseries datasets.

It is implemented as an extension to the Postgresql ORDBMS, building on
the advanced Postgres client/server ORDBMS engine.

It provides tools to automatically scale to many billions of records,
with additional functions to extract timeseries data.

It does nothing that native Postgresql cannot do, in terms of functionality, but
provides tools and approaches that significantly simplify the administration
and improve the performance of Postgresql for managing large timeseries
datasets.

See: https://www.timescale.com/how-it-works

https://www.timescale.com/how-it-works

Timescaledb: An introduction and brief overview

Architecture:

Most timeseries databases can be categorised as one of two types:
 wide (lots of tables/columns breaking up large datasets into subsets)
 narrow (lots of records in a well normalised structure, aka deep)

Wide structures perform well on simple queries, but can get bogged down when
you are joining lots together. Adding new sensors typically requires structural
modifications (eg: new tables). Databases can have hundreds of (small) tables
that users need to interact with.

Narrow structures suit the relational model and conventional indexes, but very
large datasets can get problematic (don't scale as well). New sensors generally
fit within existing structures. They have few tables and simple structures.

Timescaledb tries to be the best of both worlds: the user sees a simple “deep”
structure, but underneath, the database automatically splits the data into
subsets, based on the actual data. We get the simplicity of working with a few
deep tables, with the performance benefits of the underlying hidden wide
structures.

Timescaledb: An introduction and brief overview

Architecture:

From a user perspective, TimescaleDB exposes what look like singular tables,
called hypertables, that are actually an abstraction or a virtual view of many
individual tables holding the data, called chunks.

Chunks are created by partitioning the hypertable's data into one or multiple
dimensions: All hypertables are partitioned by a time interval, and can
additionally be partitioned by a key such as device ID, location, user id, etc.

https://docs.timescale.com/v0.9/introduction/architecture

https://docs.timescale.com/v0.9/introduction/architecture

Timescaledb: An introduction and brief overview

How do you install & use it?

1. It requires libraries to be preloaded by the Postgresql server on startup

2. It is installed as an extension in a standard Postgresql (v10+) database

In your postgresql.conf file, add the line:
shared_preload_libraries = 'timescaledb'

Restart postgresql (eg: service postgresql restart)

In your database, run:
CREATE EXTENSION IF NOT EXISTS timescaledb CASCADE;

Timescaledb is now installed & operational in your database. To set up a table of
timeseries data to be managed by timeseriesdb, you create the table as usual,
then run: SELECT create_hypertable('table', 'column');

There is more if you want to get into details, but this is all that is required.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

and “how long is a piece of string?” and other short stories...

NIWA maintains a DAS database. This is a Postgresql database storing
vessel (mostly Tangaroa) instrument readings at 1 minute intervals,
captured by the vessels' “Data Aquisition System”.

It is currently running on an old SLES server on Postgres v8.3.14.
(FYI: v11 has just been released – DAS db is over 100 releases old)

It needs upgrading, so I used this as a test dataset to see if Timescaledb offers
any advantages over standard Postgres for NIWA's DAS database...

The main reading table has about 550,000,000 records, so is reasonably
substantial. It is currently growing by about 50,000,000 records per year.

The rest of the presentation describes the system & shows some timed SQL
commands run on both a native table and a timescaledb hypertable holding
the same data.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Search one.niwa.co.nz for “DAS database” for information,
https://one.niwa.co.nz/download/attachments/18355008/DAS%20database.pdf

The documents follow the layout used for the MPI research databases
managed by NIWA for MPI.

The Timescaledb & Postgres settings have NOT been tuned or
 experimented with, so any results can probably be improved

– a very simple trial.

The original DAS data contains 60 records with a null timestamp – these
cannot be stored in a Timescaledb hypertable – so were dropped from the
hypertable.

Simplistic hot and cold timings were usually carried out.

Cold: immediately after a postgresql server restart
Hot: the second time the same query was run sequentially

https://one.niwa.co.nz/download/attachments/18355008/DAS%20database.pdf

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

All tests carried out on under Linux Mint v19, Postgresql v10.5,
Timescaledb v 0.12, on an i7 laptop with 8Gb memory & a 480Gb SSD.

All SQL commands were run from the Linux shell:
eg: psql -d das -c “\timing” -c “select count(*) from t_reading;”

Thus each command ran two SQL statements, the first turned timing on
so the elapsed time was reported at the completion of the second command.

t_reading is the native Postgresql table with all records.
ts_reading is the Timeseriesdb hypertable

The new hypertable was populated using the SQL:

insert into ts_reading
 select * from t_reading

where timer notnull;

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select count(*) from table;

Cold native: 104923ms (1m 45s)
Hot native: 104530ms (1m 44s)

Cold timescale: 188157ms (3m 08s)
Hot timescale: 110930ms (1m 51sec)

8Gb of memory for caching is no real help with a table scan, so
there is no real advantage in a hot query over cold for a native table.

Indexes are of little value as every record in the table is processed.

Scanning many chunks & partitions comprising a hypertable adds a fair bit of
overhead, but timescaledb/OS optimisations largely negate this for a hot scan.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select count(*) as no from table
 where timer >='01/01/2017'::date
 and timer < '01/01/2018'::date;

Cold native: 20318ms (00m 20s)
Hot native: 05671ms (00m 05s)

Cold timescale: 04771ms (00m 05s)
Hot timescale: 02173ms (00m 02s)

Timescaledb is about 3-4x faster for a simple query with a date range.
A hot query is significantly faster in both cases.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select extract(year from timer) as yr
 count(*) as no from table

 where yr=2017
 group by yr;

Cold native: 472787ms (07m 53s)
Hot native: 464911ms (07m 45s)

Cold timescale: 116057ms (01m 56s)
Hot timescale: 122641ms (02m 03s)

Timescaledb is about 4x faster for a simple group by query with a date constraint.
A hot query shows no advantage, and not enough iterations were run
for any detailed conclusions.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

select t1.timer as timer
 t2.value as lat,
 t3.value as lon,
from t_reading t1,
 t_reading t2
where t1.timer >= '01/01/2016'::date
 and t1.timer < '01/02/2016'::date
 and t1.measurement_key in (231,196,73,31)
 and t2.measurement_key in (232,197,74,32);

Cold native: 56755ms (00m 57s)
Hot native: 55411ms (00m 55s)

Cold timescale: 52229ms (00m 52s)
Hot timescale: 51645ms (00m 52s)

Timescaledb is slightly faster, but much of the work is in creating the join &
the measurment_key filter, where Timescaledb is having no impact.

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select t1.timer::date as _date,
 avg(t1.value) as daily_lat,

 avg(t2.value) as daily_lon
 from t_reading t1, t_reading t2
 where t1.timer >= '01/01/2001'::date
 and t1.timer < '01/02/2001'::date
 and t2.timer = t1.timer
 and t1.measurement_key in (231,186,73,31)
 and t2.measurement_key in (232,187,73,32)
 group by _date
 order by _date;

Cold native: 66680ms (01m 07s)
Hot native: 55412ms (00m 55s)

Cold timescale: 41499ms (00m 41s)
Hot timescale: 41694ms (00m 42s)

Timescaledb (cold) is about 25% faster than native postgres (hot)

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select timer::date as date,
 count(*) as no
 from t_reading
 where extract(doy from timer)=01
 group by date
 order by date;

Cold native: 91359ms (01m 31s)
Hot native: 91521ms (01m 32s)

Cold timescale: 99475ms (01m 39s)
Hot timescale: 99032ms (01m 39s)

Timescaledb is about 9% slower than native postgres

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select date_trunc('day', timer) as day
 count(*) as no
 from t_reading
 where timer >= '01/01/2010'::date
 and timer <= '31/01/2010'::date
 group by day
 order by day;

Cold native: 2183ms (00m 2s)
Hot native: 1434ms (00m 1s)

Cold timescale: 1134ms(00m 01s)
Hot timescale: 825ms (00m <1s)

Timescaledb is about 1.5-2x faster than native postgres

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select distinct timer
 from t_reading
 where (timer >= '2002/12/25'::date and
 timer <= '2003/01/15'::date)
 and ((measurement_key = 31 or
 measurement_key = 73 or
 measurement_key = 93 or
 measurement_key = 116 or
 measurement_key = 196 or
 measurement_key = 231) and
 value between -44 and -43.7)
 and ((measurement_key = 32 or
 measurement_key = 74 or
 measurement_key = 94 or
 measurement_key = 117 or
 measurement_key = 196 or
 measurement_key = 232) and
 value between 184.2 and 184.5);

Are there any records
in this time and place...

need to use all lat/lon
devices!

Cold native: 1596ms
(1.6s)

Cold timescale: 36ms
 (0.04s)

Timescale is 30x faster

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Query: select time_bucket('fifteen minutes', timer) as fifteen_min,
 avg(value) as avg_sst
 from ts_reading
 where extract(year from timer) = 1995
 and measurement_key=130
 group by fifteen_min
 order by fifteen_min;

The time_bucket() function only works with timescaledb tables.

It ran in 46932ms (47s) for a year's worth of averaged SST's at 15 minute
intervals

Timescaledb: An introduction and brief overview

What performance & functionality gains are there?

Generally timescaledb (note: v 0.12) equals or betters native Postgresql
performance.

Functions such as “time_bucket()” are useful extensions.

In cases where the main workload is predicated on time filters, it can be
significantly faster (approaching 4x faster – though claims of 20x are made,
and in one case it was 30x)

These tests did NOT optimise Postgresql server settings, which is likely to
improve both native and timescaledb performance.

They did NOT use native partitioning or clustered indexes, which are likely
to improve native postgres performance (but require maintenance).

They did NOT create extra chunks in the hypertable based on instrument,
which (theoretically!) will significantly improve Timescaledb performance.

Timescaledb: An introduction and brief overview

Conclusion.

This was a very limited trial, but found no issues using Timescaledb.

Installation was very simple, and it worked as promised.

Online documentation was good, providing all the information needed to install
and trial Timescaledb.

A table of 550,000,000 records performs quite adequately on a reasonable spec
laptop (with both native Postgres and Timescaledb).

It can be much faster and has some useful extensions to Postgres for querying
time series data.

I found no reason not use it (unless all your queries require full table scans) if you
are managing a timeseries database.

Timescaledb: An introduction and brief overview

Analytics

The Timescaledb web site has an interesting example of timeseries
data analytics and forecasting (ARIMA model)...

https://docs.timescale.com/v0.12/tutorials/tutorial-forecasting

Python, R: (data export) + Apache, MADlib: in database

https://docs.timescale.com/v0.12/tutorials/tutorial-forecasting

Timescaledb: An introduction and brief overview

Crystal ball gazing

Timescaledb is new (just at v1.0) & will continue to improve

The Postgres core dev deam is very interested in Timescale
- useful Timescale functionality will be integrated in core Postgres

Postgres v11 was released this week - on Tuesday 16 Oct (2018)
- this includes significant advances in parallel processing

 - (a single query can split the task between multiple
 “worker processes”)

I'm guessing that this combined with Timescaledb's splitting up of
datasets into separate chunks/shards/partitions will provide serious
performance gains over the next couple of years

Timescaledb: An introduction and brief overview

Thank you for your time, hopefully this was relevant & useful...

Any questions??

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

