Modelling walkability in Wellington

Shrividya Ravi (Shriv)

What can you expect?

- An introduction to doing spatial data science
- An introduction to statistical models
- Insights about walkability in Wellington
- Lots of graphs and figures

Motivation

- Open data sources
 - OpenStreetMap
 - Data.gov*: data.gov, data.govt.nz, data.gov.uk, data.gov.in
- Open source packages
 - osmnx, pandana, networkx, geopandas in Python
 - sf, rgdal, ggmap in R
 - QGIS

Inspiring people: Modelling critical infrastructure shutdown

Kuan Butts

Inspiring people: Urban form and morphology

City Street Network Orientation

Geoff Boeing

Inspiring people: Propensity to cycle

Robin Lovelace

Walkability

Reducing car reliance and encouraging more transportrelated physical activity are now recognised as beneficial objectives from health, social and environmental perspectives. Evidence is accumulating that a number of built environment attributes are associated with the likelihood of residents using active transport.

- Measuring neighbourhood walkability in NZ cities

Unlike cars, pedestrians are sensitive to their environment; changes to it can impact the *walking experience* or the *decision to walk*.

We'll explore the impact of hilly terrain on walkability Specifically, on walkability to council playgrounds - an amenity that should be locally accessible on foot.

- Council engagement for their recent Play Policy showed:
 - 41% of playground users walked and 45% drove.
 - 58% of playground users go to their *nearest* playground.

Spatial data science

Overview

What is the impact of hills on walkability to playgrounds in Wellington?

Space

Abstraction: spatial primitives

Points

- Point coordinates of playgrounds
- Overlaid on map of Wellington

Lines

• Line segments that define a street or in this case, a route.

Polygons

Poylgon boundary of suburb

Complex abstractions

- Poylgon boundary of suburb
- Polygon boundaries of meshblocks within suburb

Abstraction: map to graph

What is a graph?

- Nodes / vertices
- Edges
- Edges and nodes can have associated values

Creating a street graph

Map represented as street edges with intersections as nodes

Data: spatial primitives

	suburb	postcode	MB2019_V1_00	geometry
917	Karori	6012.0	2104100	POLYGON ((174.7527410567269 -41.27200381936174
934	Karori	6012.0	2106100	POLYGON ((174.7533828776446 -41.28300381209932
942	Karori	6012.0	2105503	(POLYGON ((174.7530386517898 -41.2800340600980
944	Karori	6012.0	2149500	POLYGON ((174.7535317353109 -41.28234654562732
947	Karori	6012.0	2149400	(POLYGON ((174.754264330901 -41.27988740170357

Points, lines and polygons can all be compressed in a geodataframe.

Data: graphs

	elevation	highway	osmid	x	У	geometry
1259077823	196.755	NaN	1259077823	174.792882	-41.227920	POINT (174.7928822 -41.22792)
1259077824	218.696	NaN	1259077824	174.791983	-41.229385	POINT (174.7919835 -41.2293852)
1259077827	163.804	NaN	1259077827	174.805433	-41.213698	POINT (174.8054327 -41.2136978)
3619684648	12.692	NaN	3619684648	174.780604	-41.276563	POINT (174.7806038 -41.2765628)
3619684652	12.344	NaN	3619684652	174.781234	-41.276037	POINT (174.7812341 -41.2760368)

		name	grade	length	osmid	maxspeed
1259077823	1259072929	Truscott Avenue	0.1319	66.800	110175609	50
	1259072943	Truscott Avenue	-0.0475	65.443	110175609	50
	6083853567	John Sims Drive	-0.1116	177.292	110176112	50
1259077824	6083853567	John Sims Drive	0.1650	13.022	110176112	50
1259077827	465611807	Cambrian Street	0.0396	71.272	107284021	50

- Street graph: with street gradient attribute for edges
- WCC playgrounds represented as points
- Suburb boundaries defined by WCC as polygons
- LINZ residential areas as polygons

Data: enriched and aggregated for modelling

Just to make life confusing, there are several definitions of accessibility. For the following analyses, accessibility is:

- an objective metric
- calculated with a street graph and points of interest (POIs)
 - e.g. Wellington street graph and playground locations
- calculated with a specific unit of interest
 - e.g. distance, travel time, total travel time etc.
- limited to nearest POI

How to calculate accessibility

(I) Street grid with a single POI

(II) Convert street grid to points

Accessibility on streets

- Find closest street graph nodes to: start and park
- Find shortest part between start and park nodes
- Sum edge weights of shortest path

Efficient accessibility with Pandana

Street graph with gradients

All edges (green ~ flat gradient)

 Edges within 5% absolute gradient

Hills vs. flat land

Assuming single speed

 Accounting for speed variability due to hills

Difference due to hills

Accessibility distributions by suburb

Spatial filters

Residential area mask

Filtered accessibility

Why spatial filters are important: Rongotai

Model

- From the observed accessibility data, what is the average accessibility to a playground across the different Wellington suburbs?
- From the observed accessibility data, what is the variation in accessibility to a playground within a Wellington suburb?

Set up Bayesian model

- Model individual suburb accessibility (A_s) as a lower value truncated normal distribution.
- Normal distribution: $A_s \sim N(\mu, \sigma)$
- Truncation condition: $A_s \in [0, \inf]$

Efficient Bayesian modelling with Stan

- Stan model output for µ (labelled as mu)
- Samples of μ drawn by Stan

Modelling average playground accessibility by suburb

Modelling variability in playground accessibility by suburb

Making sense of model output

	suburb	labels	mu_norm	sigma_norm
5	Karori	High σ and μ	5.001377	2.351785
10	Strathmore Park	High σ and μ	4.082486	2.699599
17	Khandallah	High σ and μ	5.727995	4.097447
3	Mount Cook	Low σ and μ	-4.600104	-3.528490
6	Newtown	Low σ and μ	-6.516272	-3.044475
18	Mount Victoria	Low σ and μ	-4.999304	-3.206442

The best and worst of Wellington

Conclusions

- Hills have a significant impact on total travel time.
- Wellington suburbs average 12-17 minutes in total travel time to nearest playground.
- But, there is a large variation *within* suburbs.

- Impact of including school playgrounds in the analysis.
- Impact of adding a new council playground (e.g. Berhampore playground coming in ~2020).
- Areas within suburbs with poor accessibility. Are there any options nearby?
- Compare this analysis to WCC's recent Play Space Policy.

- Write up on https://shriv.github.io
- Code in https://github.com/shriv/accessibility-series/: to be updated

- Created by Thibault Geffroy for NounProject
- Created by Thuy Nguyen for NounProject
- Created by Christopher Smith for NounProject
- Created by ProSymbols for NounProject
- Graph illustrations from https://mathinsight.org/network_introduction