
There are �ve houses.
The Englishman lives in the red house.

The Spaniard owns the dog.
Coffee is drunk in the green house.

The Ukrainian drinks tea.
The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.
Kools are smoked in the yellow house.

Milk is drunk in the middle house.
The Norwegian lives in the �rst house.

The man who smokes Chester�elds lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.

The Lucky Strike smoker drinks orange juice.
The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who owns the zebra and who drinks water?

Programming in LogicProgramming in Logic

WOSSAT, Thursday 18th July 2019

Simon Merrick
Github · Twitter @iokiwi @iokiwi

https://github.com/iokiwi
https://twitter.com/iokiwi

Einstein's Riddle

(alledgedly)

There are �ve houses.

There are �ve houses.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffee is drunk in the green house.

The Ukrainian drinks tea.

The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the �rst house.

The man who smokes Chester�elds lives in the house next to the man with the fox.

Kools are smoked in the house next to the house where the horse is kept.

The Lucky Strike smoker drinks orange juice.

The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who owns the zebra and who drinks water?

PrologProlog
Programmation en logique

"The offspring of a successful marriage
between natural language processing

and automated theorem-proving."

19711971
The result of french research into machine natural

language processing.

"The idea of using a natural language
like French to reason and communicate
directly with a computer seemed like a

crazy idea"

Formal logicFormal logic

The mathematical discipline of formal logic in 4 easy
steps

1. Distill problem to notation
2. Apply rules of inference
3. ???
4. Pro�t Proof!

C+C+

If it is raining, then it's cloudy.

P ⟹ Q

It is raining.

P

Therefore, it's cloudy.

∴ Q

Intuitively, we undertand this argument is valid

The mathematical dicipline of formal logic

1. Distill problem to notation
2. Apply rules of inference
3. ???
4. Pro�t Proof!

Predicate logic introduces a few more important
concepts

Universal QuantificationUniversal Quantification

For all x

∀x

Existential QuantificationExistential Quantification

There exists some x

∃x

PredicatesPredicates

 is oolx C

Cx

 is djacent to x A y

Axy

Notice the pre�x notation

Using these constructs of predicate logic we can start
to model the real world in logic

The nglishman ives in the ed

house

e L r

Ler

Finally, we can also combine quanti�ers and predicates

There exists some such that ives

in the ed house

x x L

r

∃xLxr

We are ready to write our �rst prolog program!

PrologProlog

Programs consist of

facts and rules

Generically, these are referred to as clauses

Our �rst fact

human(simon).

imon is umans H

Hs

Our �rst query

queries start with ?-
evaluated as True, or False

?-human(simon).
True

Using variables in our queries

?-human(X).

Does there exist some such that is

uman?

x x

H

∃xHx

Prolog look through facts it knows about for one that
makes the query True

Yes!

?-human(X).
X=simon

imon is umans H

Hs

Family treesFamily trees
The FizBuzz of Prolog

father(jamie, tommen).
father(jamie, myrcella).
father(jamie, joffrey).

mother(cersei, tommen).
mother(cersei, myrcella).
mother(cersei, joffrey).

?-father(X, tommen)
X=Jamie

?-father(jamie, Y)
Y=tommen
Y=myrcella
Y=joffrey

?-father(X, Y)
X=jamie, Y=tommen
X=jamie, Y=myrcella
X=jamie, Y=joffrey

We could go further and de�ne some sibling facts

sibling(tommen, myrcella).
sibling(tommen, joffrey).
sibling(joffrey, myrcella).

Neither elegant nor scalable.

There has to be a better way...

R = () − n
n2

2

RulesRules
Specify relationships between facts

 and are siblings if and

share a mother or a father

X Y X Y

sibling(X, Y) :-
 mother(Z, X),
 mother(Z, Y),
 X \== Y.

sibling(X, Y) :-
 father(Z, X),
 father(Z, Y),
 X \== Y.

?- sibling(X, Y).
X = tommen, Y = myrcella
X = tommen, Y = joffrey
X = myrcella, Y = tommen

More relations...

uncle_or_aunt(X, Y) :-
 mother(M, Y),
 sibling(M, X).

uncle_or_aunt(X, Y) :-
 father(M, Y),
 sibling(X, M).

father(tywin, jamie).
father(tywin, cersei).
father(tywin, tyrion).

?- uncle_or_aunt(X ,Y).
X = jamie, Y = tommen
X = tyrion, Y = tommen
X = jamie, Y = myrcella
X = tyrion, Y = myrcella
X = jamie, Y = joffrey
X = tyrion, Y = joffrey
X = cersei, Y = tommen
X = tyrion, Y = tommen
X = cersei, Y = myrcella
X = tyrion, Y = myrcella
X = cersei, Y = joffrey
X = tyrion, Y = joffrey

Lists and someLists and some
operationsoperations

[1, 2, 3]

[one, two , three]

Referencing items in listsReferencing items in lists

[F | R]

The first part of the list, and the rest of

the list

[a, b, c]

Then [F | R] equates to

F=a, R=[b, c]

The The appendappend clause clause

Prolog has a usefull clause for appending to a list.

append(A, B, C)

?-append([1], [2, 3], C)
C=[1, 2, 3]

append is nothing more than a clause

Succeeds if C is the result of appending

B to A

Prolog is working out the value(s) for C which make the
append() clause True

But, because this is prolog,

we can do this

?-append([1], B, [1, 2, 3]).
B=[2,3]

and this

?-append(A, B, [1, 2, 3]).
A = [], B = [1, 2, 3]
A = [1], B = [2, 3]
A = [1, 2], B = [3]
A = [1, 2, 3], B = []

The "Don't care" variableThe "Don't care" variable

_

Used like a variable but it tells prolog

we don't care what it's value is.

[a, b, c]

Then [F|_] equates to

F = a, we don't care about the rest

Solving Einstein's RiddleSolving Einstein's Riddle

There are �ve houses.
The Englishman lives in the red house.

The Spaniard owns the dog.
Coffee is drunk in the green house.

The Ukrainian drinks tea.
The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.
Kools are smoked in the yellow house.

Milk is drunk in the middle house.
The Norwegian lives in the �rst house.

The man who smokes Chester�elds lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.

The Lucky Strike smoker drinks orange juice.
The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who owns the zebra and who drinks water?

For each house there are 5 factors to consider

The nationality of the Owner

The Pet

The Cigarret brand

The Drink

The Color

A fact for houses

house(Owner, Pet, Cigarette, Drink, Color)

The The houseshouses rule rule

Succeeds when is a list of 5 facts which, collectively,
satisfy requirements 2 - 15

H

houses(H) :-
 % There are 5 houses,
 % The Englishman lives in the red house,
 % The Spaniard owns the dog,

We can start building up facts about the houses piece
by piece

We'll use the don't care variable where information is
not provided

Suceeds if | | = 5

there are 5 houses

houses(H) :-
 length(H, 5),
 ...

H

The Englishman lives in the red
house.

houses(H) :-
 ...
 member(house(englishman,_,_,_,red), H),
 ...

The Spaniard owns the dog.

houses(H) :-
 ...
 member(house(spaniard,dog,_,_,_), H),
 ...

Coffee is drunk in the green house.

houses(H) :-
 ...
 member(house(_,_,_,coffee,green), H),
 ...

The Ukrainian drinks tea

houses(H) :-
 ...
 member(house(ukrainian,_,_,tea,_), H),
 ...

We need a rule to determine which houses are next to
one another

The green house is immediately to the

right of the ivory house.

The The next(A, B)next(A, B) clause clause
Houses and are next to each other if

 is next to

Or if is next to

A B

A B
next(A, B, L) :-

append(_, [A,B|_], L).

B A
next(A, B, L) :-

append(_, [B,A|_], L).

The green house is immediately to the

right of the ivory house.

houses(H) :-
 ...
 next(house(_,_,_,_,ivory),house(_,_,_,_,green), H),
 ...

The Old Gold smoker owns snails.

houses(H) :-
 ...
 member(house(_,snails,gold,_,_), H),
 ...

Kools are smoked in the yellow house.

houses(H) :-
 ...
 member(house(_,_,kools,_,yellow), H),
 ...

Milk is drunk in the middle house.

houses(H) :-
 ...
 H = [_,_,house(_,_,_,milk,_),_,_],
 ...

The Norwegian lives in the first
house.

houses(H) :-
 ...

 H = [house(norwegian,_,_,_,_)|_],
 ...

The man who smokes Chesterfields
lives in the house next to the man with

the fox.

houses(H) :-
 ...

 next(house(_,fox,_,_,_), house(_,_,chesterfield,_,_), H),
 ...

Kools are smoked in the house next to

the house where the horse is kept.

houses(H) :-
 ...

 next(house(_,_,kools,_,_), house(_,horse,_,_,_), H),
 ...

The Lucky Strike smoker drinks

orange juice.

houses(H) :-
 ...

 member(house(_,_,lucky,juice,_), H),
 ...

The Japanese smokes Parliaments.

houses(H) :-
 ...
 member(house(japanese,_,parliaments,_,_), H),
 ...

The norwegian lives next to the blue
house

houses(H) :-
 ...
 next(house(norwegian,_,_,_,_), house(_,_,_,_,blue), H).
 ...

The Zebra Owner RuleThe Zebra Owner Rule

Succeeds when some list meets all of the 15 criteria
and, contains a house with a zebra.

H

zebra_owner(O) :-
 houses(H),
 member(house(O,zebra,_,_,_), H).

No facts explicitly match Zebra

But this rule will also match any facts with no pet value.

There was only one

?-zebra_owner(O).
O=japanese

The Japanese man owns the Zebra

The Water Drinker ruleThe Water Drinker rule

Succeeds when some list meets all of the 15 criteria
and, contains a house where water is drunk.

H

water_drinker(D) :-
 houses(H),
 member(house(D,_,_,water,_), H).

Like the Zebra rule, this rule will match any facts with
no Drink value.

There was only one

?-water_drinker(D).
D=norwegian

The Norwegian man drinks the Water

Programming in LogicProgramming in Logic

WOSSAT, Thursday 18th July 2019

Simon Merrick
Github · Twitter @iokiwi @iokiwi

https://github.com/iokiwi
https://twitter.com/iokiwi

ResourcesResources
4 Programming Paradigms in 40 minutes

The Birth of Prolog

https://youtu.be/cgVVZMfLjEI?t=1185

http://web.archive.org/web/20070703003934/www.l
mrs.fr/~colmer/ArchivesPublications/HistoireProlog/1

https://youtu.be/cgVVZMfLjEI?t=1185
http://web.archive.org/web/20070703003934/www.lim.univ-mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19november92.pdf

https://en.wikibooks.org/wiki/Prolog

http://www.cs.trincoll.edu/~ram/cpsc352/notes/prolog

http://infolab.stanford.edu/~ullman/focs/ch12.pdf

https://en.wikibooks.org/wiki/Prolog
http://www.cs.trincoll.edu/~ram/cpsc352/notes/prolog/factsrules.html
http://infolab.stanford.edu/~ullman/focs/ch12.pdf

Online CompilersOnline Compilers
https://swish.swi-prolog.org/

https://www.tutorialspoint.com/execute_prolog_online

https://swish.swi-prolog.org/
https://www.tutorialspoint.com/execute_prolog_online.php

